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Abstract. Functions with local minima and size of their ‘region of attraction’ knaavpriori, are

often needed for testing the performance of algorithms that solve global optimization problems. In
this paper we investigate a technique for constructing test functions for global optimization problems
for which we fixa priori: (i) the problem dimension, (ii) the number of local minima, (iii) the local
minima points, (iv) the function values of the local minima. Further, the size of the region of attraction
of each local minimum may be made large or small. The technique consists of first constructing a
convex quadratic function and then systematically distorting selected parts of this function so as to
introduce local minima.
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1. Introduction

The global optimization problem may be expressed as :
find x* € D, D C R" suchthat f(x*) < f(x), Vxe D (1.2)

wheref : D — R and D is a compact set iR". It is well-known that (1.1)

is very difficult to solve because both the global minimum may have a ‘small
attraction region’ and there do not exist simple rules to establish whether or not
a given point is a global minimum. Test problems are needed to evaluate the ef-
ficiency of algorithms proposed for solving (1.1). Many global optimization test
problems exist in the literature (e.g. Dixon & Szeg6, 1978; Schittkowski, 1980,
1987; Floudas & Pardalos, 1990). In addition, test problem generators have been
developed for specific problem classes (e.g. Sung & Rosen, 1982; Kalantari &
Rosen, 1986; Pardalos, 1987, 1991, Li & Pardalos 1992; Khoury & Pardalos, 1993;
Moshirvaziri, 1994; Jacobsen, 1996). The main drawback of test problems may be
that the local minima and their function values are not known exactyiori.
Moreover, we have no estimate on the size of the ‘attraction region’ of each local
minimum. For this concept we may consider the definition by Betr6 (1991).

* This research has been partially supported by CNR and MURST.
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Let D be a compact set iR". Assume that in D there is a finite number of local
minima, say;, ..., x. Let P be a search algorithm which, starting from a point
x € D leads to some point P(x) in D. Then define region of attractionof =
1,...,m, the set

={xeD:Px)=x},i=1....,m

As has been done in previous papers (Pardalos, 1987; Li & Pardalos, 1992),
in the present paper we investigate a technique for constructing test functions for
global optimization problems for which we fapriori

(1) the problem dimension;

(2) the number of local minima;

(3) the local minima points;

(4) the function values at the local minima;

and for which the size of the ‘region of attraction’ of each local minimum may be
made large or small. The technigue consists of redefining a paratitigien on
D within subsetsS; ¢ D, i =1, ..., m, by cubic and quintic interpolations.

2. Test function by cubic polynomials

Roughly speaking, our technique for constructing test functions by cubic polyno-
mial consists of defining a paraboloid within a fixed domainD c R”, then in
redefining the equation representiagwithin ballsS; ¢ D,i = 1,...,m, of
radiusp;, such that the resulting functiofi is continuously differentiable and has
a local minimum inS;. For simplicity we develop our construction technique in the
case of a unique ball of radiusp.

Let us consider the paraboloid Z in a fixed domairc R" of equation

Z: gx)=|x—-T|>+t, xeD (2.1)
whereT = (x1,...,x,) € D andr € R are fixed. By|| - | we denote here and
throughout the paper the euclidian norm. Clearly) has its minimum af’ with
valuet. Denote byM = (y1, ..., y,) any point chosen in the interior d@, with

M # T; letn denote the least distance fravfito the boundary oD, p any positive
real withp < min(n, |M — T|)*, and

={xeR" |lx — M| < p}, B = ¥ S = the boundary of (2.2)

Our aim is to redefin& in the ballS. Letx = (x4, ..., x,) be any point inS
and Q be given by

(1—)’1) (n yn)
0= <|| R Py 77 —M||+y”)‘

* The subsequent investigation could be carried out with |M — T|.
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Clearly Q € B. We determine the univariate cubic polynomiali) such that
CO=f CO=0 Clpp=¢ C'(p)=vy (2.3)

where¢ andy are the values of at Q and the directional derivative &f along
the segment fronQ to M, respectively. Furthey is any arbitrary real such that
f < f =min{g(x)|x € B}, thatis

2
6= Z[p(xk A;T') y_jki| y

P Xk — Vi) _ } Xk — Yk
=2 [7+y—x by (2.4)
Z}nx—Mn =M
Straightforward computations give
CA) =ar3+br%+ f (2.5)

with

2 % 3 y
a=—-—=@—-f+—, b=—-—=@—-f+~—.
p p P p

At this point for anyx = (x4, ..., x,) € S we define the function
2 (x—M,T-M) 2 3
C,(x) = (— — —A) lx — M|| 2.6
g p?  llx— M| p® (2.6)
4(x —M,T—M) 3 ) 5
1-= +SA)Ix— M2+ f
( p llx—M] 0?

whereA = |T — M|?>+t — f, and<, > denotes the usual scalar product.
Finally we define forx € D

_JCx) if xeS
Fx) = { gx) if x¢s. (2.7)
We can show the following:

LEMMA 2.1. f(x) given by (2.7) is continuously differentiable in
Proof. Consider the first order derivatives; we have.for D

0x;
2(xj —xj) if x¢g$

af (x) _ { 3 if xeS 2.8)

8Xj
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where

0C,(x) 2
an _pZ

el M||+3<2<X‘M’T‘M> ZA)
(X)X — —_ -
! p?  llx— M| p®

4
X (x; —yp)lx — M| — ;hj(x)

v A =MT-M) 3 )
_AG-MT-M 3 N _s
p w2 )T

withh;(x) = (x; —y)llx = M| — (x =M, T — M)(x; —y;)/llx — M||. Thatis

0C,(x) 2
an _pZ

6
hjo)llx — M| + ?(x —M, T —M)x;—y))

6 4
- ?A(Xj —y)llx — M| — ;hj(x) +2(x; —yj)

8(x—M,T—M)( )+6A( )
p =My T T

We evaluatedC,/dx; at anyx € B. Substituting||lx — M| for p into dC,,/9x; we
get

(2/p%) hj(x)p + (6/p*)(x — M, T — M)(x; — y;)

—(6/p%) A(x; — y;) — (4/p) h;(x) + 2(x; — y;)

—(8/p)(x — M, T — M)(x; — y;) + (6/p?) A(x; — y;)
=—2/p) hj(x) — 2/p?)(x — M, T — M)(x; — y;) + 2(x; — y;)
=—2(X; —y)) + @2/pHx — M, T — M)(x; —y;)

—(2/pH(x =M, T —M)(x; — y;) + 2(x; — y;)
=2(x; — ¥;)

Clearly continuity atv € B follows. To complete the proof we need to show
the continuity ofdf/dx; at M. We calculate lim_, ,; 9f/9x;. In the expression for
df/0x; the only term whose limit is not trivial is

(x—M, T — M)
lx — M|l

4( )
—— x — y s
P J J
which may be written as
4
—;(xj —y)OIT — M|

with |6(x)| < 1. The latter goes to zero as— M. |

LEMMA 2.2. The cubic polynomial’ (1) has a minimum at = 0.
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Proof. The second order derivative 6f(1) at zero equals:

d?C

_op_o| B Y
W(O)-%—Z[pz@ i p}

with ¢ andy defined in (2.4). It is not restrictive to assume B. In this case

p=> (u—x)’+t y=2) (u—x)

(xXx — Y1)
f=1 =1 p

and

3
p%b = p° [—z(qﬁ—f)—z}
p p
—ex—T,(x — M) —3(T = M) > +3(t — f)
=< vy, vp > +3( — f) (2.9)

wherevi=(x —T)andv, = (x — M) —3(T — M) = (x — 3T + 2M).
The scalar produdtv,, vo) may be given as function @f, with cog6) = (x —
M, T —M)/(lx — MIIIT — M]). Let
w=(T—-M/IT — M| =(wy,...,w)
and

2= =xp)/llx =xpll = (21, ..., 20)

wherex, is the projection ofc onto (T — M). Then we may write

x = (w1 €0SH + z1p SINO + y1, ..., w,p COSH + 7,0 SINO + y,).
Moreover,
m=wx-T)
= (w1p COSH + z10SINO + y1 — X1, ..., W, p COSH + 7,0 SINO + y, — X,,)

and

vy = (x — 3T + 2M)
= (w1p COSH + 710 SINO + 3y, — %1, ..., w,p COSH + z,,p SINO
+ 3y, — 3x,).
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Since(z, w) = 0and(z, T — M) = 0 we have
(v1, v2) =

n
Z(wip COSH + z;p SiNB + y; — ;) (w; p COSH + z; p SING + 3y; — 3%;)
i=1
= p?cogO||wl|? + p?sirf 0]|z]|? + 202 sin6 cosH (w1z1 + - - - + Wpzn)
- 4/0 COS@[()E]_ - yl)wl R ()En - yn)wn]
—4psind[(x1 — yDz1 + -+ + (X — Yu)Zn] — 6(X2y1 + -+ 4+ X ¥0)

n
= p? — 4p cosO||T — M||(w, w) — GZ)@%’
i=1

= p? —4pcosh| T — M| — 6(T, M).

Hence(vy, vp) has its minimum ab = 0, which impliesx lying in the segment
from M to T. This is true for b too. At this point we calculatéb atd = 0. We get

p°h = —1p+3(t + p)t +3(t — f)

with = ||x — T||. i )
Further since we assumgd< f, with f being the minimum of the paraboloid
(2.1) in the set B, that ig = 72 + ¢, we have

p%b =312+ 2tp 4+ 3(t — f) =3t%> 4+ 2tp — 3t = 21p > 0.

This completes the proof. O

LEMMA 2.3. M is the unique local minimum gf(x) in S.

Proof. First note that by definitiory (x) must have at least one local minimum
in S. Assume the lemma is false. Then there exists a pist (x) € S, R # M,
that is a local minimum of (x) in S. LetC (1) be the cubic polynomial constructed
according to (2.3) withp andy calculated with respect t&8. Because of Lemma
2.2, and since Lemma 2.3 is assumed to be falge) has two local minima.
Clearly, this contradiction proves the lemma. O

3. Test function by quintic polynomials

In the preceding paragraph we constructed a continuously differentiable test func-
tion redefining the paraboloid by cubic polynomials. Now we generalize this
procedure by using quintic polynomials such that the redefined function is twice
continuously differentiable. Let, T, S and B be defined as in Section 2. Pro-
ceeding much the same way as in Section 2, first we write the quintic polynomial
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Q()) such that

00 = f Q'0) =0 Q"0 =46
Q) = ¢ Q'(p) =vy Q"(p) =2

whereg¢ andy are defined in (2.4) andlis an arbitrary positive real number. Note
that the second directional derivative Bfat any point and along any direction is
constant, that is 2. Furthef,is any real number such thgt< f = min{g(x)|lx
B}. The equation oD (1) satisfyingQ(0) = f, Q’(0) =0s

(3.1)

QM) =ar’ +bA* + )3 +dr> + f (3.2)

with a, b, ¢, d parameters to calculate. By taking into account the remaining con-
ditions of (3.1) and solving with respect & b, ¢ andd, we get

B ( .3 13+1
7 356 2
b:—— — —_— _—— = —
(- 1)+ 3y+2p 2
4 3§ 1
——(¢ N=—v=5,%7
o)
d—}(S
=54

Since|lx — M| = 4, and recallingp andy given in (2.4), we define the function
Q,(x), foranyx € S.

6 (x—M,T-—M 6 1 8
Q,(x) =[——4<x Ly +5 (1— 5)] lx — MJP°

o lx — M| S p
16(x — M, T — M) 15 3 F) 4
P lx — M|| Pt p 2
+[ 12(x—M,T—M)+10A+3<1 5)}” e
JR— —_— — _— x_
p?  llx = M| P p 2
1
+§5||x—M||2+f (3.3)

with A = ||T — M||?> + ¢t — f. Then the function defined for anye D is

[0, if xes
f(x)_{g([))c) if x¢s. 34

We can prove

LEMMA 3.1. f(x) is twice continuously differentiable.
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Proof. The first order derivatives of (x) are

30,(x) -
8f(x)= o ?f xesS (3.5)
an 2(.X]—X]) |f XgS
forj=1,...,nand
30,(x) 6 .
sz—?hj(x)”X—MH
6 (x—M,T—M) 6 1( 5)]
+5[—— +—A+=(1-3
et llx — M| S p3 2
3 16 2
x (x; — yplx — M| +th(X)le—M||
16(x — M, T —M) 15 3( 5)}
4 = ——A-—=|1-<2 3.6
[p3 I — M| A0 T2\t T2 (3.6)

, 12
x (x; —ypllx — M| —?hj(X)le—Mll
12(x — M, T —M) 10 3( 8>i|
+3[—— + A+ =(1-3
% lx— M| e p 2
X (x; —yp)llx — M| +8(x; — y))

with ;(x) = (£ — y)llx — M|l — (x = M, T — M)(x; — y;)/llx — M].
We need to considerQ ,(x)/dx; in the setB, that is forx such that|x — M| =
0. We obtain

—(2/p) hj(x) — (2/p?) (x =M, T — M)(x; — y;)
+2x; —y))A—=6/2)+85(x; —y;)
=—2G; —y))+ @2/p?) (x =M, T — M)(x; — y})
—(2/p?) (x =M, T — M)(x; — y;) + 2(x; — ;)
:Z(Xj —)E])
Since
im 220 ™) _

0, for j=1,...,n

P—>M 8xj

it follows that f (x) is continuously differentiable. Now we consider the second or-
der derivative®? f (x)/0x;0x, andd? f (x)/dx7. We have forj, k = 1,... ,n, j #

k

2f(x) LW e

0xj0x

0xj0xy 0 if x¢g8§
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where
20,(x) _ dh;(x) 5
- — -M 3h; — - M
ox; 0, p4[ a1 MIP 3 (00 =yl n}
30
- ghk(x)(xj' —y)lx — M|
6 (x—M, T—M) 6 1( 5)i|
+15[—— +—=A+=(1-<
Pt llx — M| 0° 03 2
X (xj — y)x — y)llx — M|
16 [9h;(x)
+— []—le — MI|? 4 2k (x) (x; — yk)]
P dxy
64
+ Fhk(x)(xj -y
16{(x —M, T —M) 15 3
83 ATz
P |x — M]|| 0 0
)
X (1— 5)} (xj — yj) (e — yi)
12[dh;(x) (k yk)}
- ' x—=M|+h;x
(xj —yj)
- —h(x)——
MO T
12(x =M, T —M) 10 3( 5>]
+3[—— +=A+—(1-<
p?  llx — M| 03 0 2
(xk — yi)
SRy vk
with
M_(;‘_ ‘)(xk_)’k)_ hy(x) i — v1)
axk - J y] ”.X—M” ”x_M”z J y]

_ o
o) = G — yo)llx — M| — (x — M. T — My =20
lx — M|
andforj =1,... ,n
2f(x) POt yes

? |2 i ags
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where

320, (x) _ 6 [ah.,-(x)

dx2 p* | dx;

J

Ilx =M%+ 3h;(x)(x; — yp)llx — Mll]

30
- th(x)(xj —yp)llx — M|

+[ 6(x—M,T—M)+6A+l(1 3)}
p* llx — M| p> p3 2

x [Bllx — M|I* + 15(x; — y)?|lx — M]|]
16 [9h;(x
p3 [ ox;

w—MW+%mmw—”ﬂ

64
+ ﬁhj(x)(xj - yj)
e llx— M| ot p? 2
x [4lx — M|? + 8(x; — y,)?]
12 [th(x)

nx—Mu+ma¢ﬁ:lQ}

llx — M|

+[ 12(x—M,T—M)+10A+3(1 5)]
p?  llx— M| P p 2
(xj_yj)2i|
X ||lx — M| +3———2— |+
[ lx — M|
with
oh;(x) _ (xj — ;) h;j(x) (x —M, T — M)

=TI T T =M T T T e

an

We need to investigat&zQp/(axjaxk), j.k=1,...,n,inthe setB. Substi-
tuting ||x — M|| = p in these derivatives, straigthforward computations give

92 0
( Qp) ~0 sz =2  jk=1...n j#k
8Xjaxk B 8'xj B

and the continuity oﬁzf/(ax.,-axk), (j,k=1,...,n)in B follows. We conclude
the proof by verifying the continuity of the second derivatives'at) at M. Since

(x — M, T — M)
x — M|

<|IT = M| 3.7)
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and
KiTVi 4 (3.8)
lx — M|

we get
XIEnM hj(x) =0. (3.9)

At this point, it is easy to show that (3.7), (3.8) and (3.9) imply
L 0Af()

lim 0, j#k.
x—>M 0x;0x; 7
Proceeding much the same way we get
92
jm 259 _ -
x—M axj

We now want to show that a lemma similar to Lemma 2.3 holdsffar) defined
by (3.4). We need to prove the following lemma first.

LEMMA 3.2. Let) € (0, p) be fixedG = {x € R"|||x — M| = A},and Py, P, €
G.If 0, < 61 with

(Pi— M, T — M)
|P = M|IIT — M|’

then f(Po) < f(Py).
Proof.Let P € S, P = (x); we can write

C0sY; =

i=172

1 8 6 6 5
$O) =f(x1,....,x) == |1—5)+—=A——IT —M]cosb |1
o3 2)  p>  pt
+ 3 1 ) 15A+16||T M| cosh | A%
p? 2) p* P8
3 8 10 12
+|=(1-2)+=SA—- =T — M| cosd | A3
p 2)  p* PP
1
+ 280+ f (3.10)

2
WithA =M —-T|?+t— f,A=| P — M| andé € [0, 7].

We rewrite (3.10) as
1 ) 6 3 8 15
OH=|=(1-z)+=a|°+|-S(1-=2)-=4a|2*
e [p3( 2>+p5} +[ pz( 2) p“]

+ 3 1-2 +10A A3+15A2+f
o 2)  p3 2

6, 16 121,
+IT — M| cosd | ——a%+ =4 — =5 | &
P P> p
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6 16 12
p P p

and co® decreases if0, 7], the lemma is proved. O

LEMMA 3.3. M is the unique local minimum of (x), f(x) defined by (3.4), in
the sets.

Proof. First note that by definitiory' (x) must have at least one local minimum
in S. Assume there is a local minimuM* = M, M* € S. Let

. (M*—M,T—M)
cosh™ = ;
[M* — MI|IIT — M|l
6* cannot be zero. Indeed, in this case the quintic polynomial thradigimd Ar*
defined in (3.2) would have first and second order derivatives &t p negative

while the directional derivativey and$ are negative and positive, respectively.
0* # 0 andM being a local minimum imply the existence Bfe S such that

P — M|l =27, M=M= M|

0" <0, f(P)>f(M")

with
- (P—M,T—-M)
cost =
P —MIIT — M|l
Clearly we get a contradiction with respect to Lemma 3.2. O

4. Test function construction

In this section we use the results of Sections 2 and 3 to define a test fugictipn
more general than that given by (2.7) or (3.4), and that exhibits the desiderable
features listed in the introduction. For simplicity we assume that the domain
where the global minimum is sought is an intervaRify that is

D={xeR"l; <xj<uj, j=1...,n} 4.1

withl = (), u = (uj), I, u € R".

The test functionf (x) will have m + 1 local minima: the poinf’, given in (2.1),
andthe pointds;, i =1,... ,m, M; #T, M; # M; withi # j. Further,f (x) is
constructed by redefining the parabolddgiven in (2.1), within the sets; given
by

Ss={xeR"Ix—M||<p} i=1...,m. (4.2)
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The choice ofp; is done under the following two constraints: (i) the sgtslo not
overlap; (ii) eachS; is entirely contained irD. These conditions are satisfied by
requiring fori =1,... ,m

0; < min(bound, dist;)
with
bound = mln( — yijs yij — 1))

dist; = min (rkn;in | M; — Mll, | M; — TII) (4.3)
Wlth Mi = (Yil, ceey Yin)-
Hence thep; are chosen according to
0; = w; min(bound, dist;). (4.4)

wherew; € (0,1). Thew; are scaling factors in the intervéd, 1); they may be
used to increase or decreage Finally, our test function, in the case of cubic
interpolation, is defined by

Fl) = Cr(x) if xeS, ke{l,...,m}
V=V x =TI+t if xgSU---US,.
where
2 (x =M, T —M) 2
Ci(x) = (—2 . = - —3A> Ilx — M|)®
Py lx — M|l Pk
4<X—Mk,T—Mk> 3 ) 2
1-— —A | lx — M| +
( pe = My o7 e i
with A = ||T — M||>+t — fi and f; € R such that
fi < minfg(x)|x € Bi}, B; = {x e R"| |lx — M;|| = pi} (4.5)
The test function based on the quintic interpolation is defined by
) Ox) if xeS, kell,...,m}
S _{ Ix =TI+t if x&SU---US,.
where
6 (x — M, T — Mk 5
Or(x) = [ — —)] llx — Ml
‘ ot = Myl 2 ¢

|:16<X—Mk,T Mk 15
+
p llx = Myl

1
_3

P
3
02
Pk

(2
( - QZ] I — M

2x—M,T M 10
St k>+—A+—(1— )]nx—MknB
p llx — Ml o2 Ok

1
02

1 2
+ 56l = Mell* + fi



220 M. GAVIANO AND D. LERA

with f; € R satisfies (4.5).
To summarize, the following are the parameters to be assigned to define a test
function.

(Q) I, u e R" suchthaf < u

(2) T = ()E]_, ,)En), lj < )Zj < Uj

(3) m, the number of new local minima

(4) M;intheinteriorofD,i =1,...,m

B) w,e©0,i=1...,m

(6) f: € Rsuchthatf; < min{g(x)|x € B;}, B; = {x € R"|||lx — M;|| = p;} and
oi is calculated by (4.4).

In Figures 1 and 2 the level sets of two functidBabfunland Cubfun2 re-
spectively, constructed by using cubic interpolation, are shown. The following
parameters have been chosen for both functions:

L=-1 wu=1 1i=12 T=(0,0).
In particular, forCubfunlwe have
No. local minimam = 3

M; =(—0.2135 —0.7038 f1=1.900 p1=0.2962
M, = (—0.5621 0.3586 f2=1.525 02 =0.3334
M3 = (03577, —0.2330 f3=1.200 03=0.2134

For Cubfun2we have

No. local minimam = 8

M; = (0.8694 —0.9146 f1=2.2000  p;=0.0854
M, = (0.0388 —0.8663 £,=2.0000  p,=0.1337
Ms=(—02330 —02332  f3=1.8503 p;=0.1648
My = (—06734 0.3998 f2=1.7286  ps=0.2835
Ms = (—0.1252 0.2550 fs=1.4571  ps=0.1420
Mg = (0.3586 0.3423 fe=1.1857  pg=0.1543
M7= (0.2997, 0.0394) f,=09143  p;=0.1511
Mg = (0.6619 —0.1650 f3=05000  pg=0.2079

In Figures 3 and 4 the level sets of two functig@sinfunland Quinfun2 con-

structed by using quintic interpolation, are shown.

The following parameters have been chosen for both functions:

li = —1, I,tl' = 1, l - 1, 27 T = (0’ 0)
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Figure 1. Graph ofCubfunl
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Figure 2. Graph ofCubfun2
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Figure 3. Graph ofQuinfunl
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Specifically forQuinfunlwe have

No. local minimam = 2

M, =(-0.233Q 0.6619 /f1=2.0000 p1=0.3381
M, = (05673 —0.4863 f>=1.8000 02=0.3727
For Quinfun2we have
No. local minimam = 6
M = (-0.9846 0.8609 f1=2.5000 01 =0.0154
M, =(—0.8663 0.0539 f» =2.0000 02 =0.1337
M3 =(-0.165Q —0.8161) f3=1.7000 03=0.1839
M, =(0.3735 0.3078 f4=1.3000 04 =0.2420
Mg = (—-0.2332 0.6923 f5=1.2400 05 =0.3077
Mg =(0.178Q —0.1680 fe =1.0000 pe=0.1224
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