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Abstract. Functions with local minima and size of their ‘region of attraction’ knowna priori, are
often needed for testing the performance of algorithms that solve global optimization problems. In
this paper we investigate a technique for constructing test functions for global optimization problems
for which we fixa priori: (i) the problem dimension, (ii) the number of local minima, (iii) the local
minima points, (iv) the function values of the local minima. Further, the size of the region of attraction
of each local minimum may be made large or small. The technique consists of first constructing a
convex quadratic function and then systematically distorting selected parts of this function so as to
introduce local minima.
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1. Introduction

The global optimization problem may be expressed as :

find x∗ ∈ D, D ⊂ Rn such thatf (x∗) ≤ f (x), ∀x ∈ D (1.1)

wheref : D −→ R and D is a compact set inRn. It is well-known that (1.1)
is very difficult to solve because both the global minimum may have a ‘small
attraction region’ and there do not exist simple rules to establish whether or not
a given point is a global minimum. Test problems are needed to evaluate the ef-
ficiency of algorithms proposed for solving (1.1). Many global optimization test
problems exist in the literature (e.g. Dixon & Szegö, 1978; Schittkowski, 1980,
1987; Floudas & Pardalos, 1990). In addition, test problem generators have been
developed for specific problem classes (e.g. Sung & Rosen, 1982; Kalantari &
Rosen, 1986; Pardalos, 1987, 1991; Li & Pardalos 1992; Khoury & Pardalos, 1993;
Moshirvaziri, 1994; Jacobsen, 1996). The main drawback of test problems may be
that the local minima and their function values are not known exactlya priori.
Moreover, we have no estimate on the size of the ‘attraction region’ of each local
minimum. For this concept we may consider the definition by Betró (1991).
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Let D be a compact set inRn. Assume that in D there is a finite number of local
minima, sayx∗1, . . . , x

∗
m. Let P be a search algorithm which, starting from a point

x ∈ D leads to some point P(x) in D. Then define region of attraction ofx∗i , i =
1, . . . ,m, the set

X∗i ≡ {x ∈ D : P(x) = x∗i }, i = 1, . . . ,m.

As has been done in previous papers (Pardalos, 1987; Li & Pardalos, 1992),
in the present paper we investigate a technique for constructing test functions for
global optimization problems for which we fixa priori

(1) the problem dimension;
(2) the number of local minima;
(3) the local minima points;
(4) the function values at the local minima;

and for which the size of the ‘region of attraction’ of each local minimum may be
made large or small. The technique consists of redefining a paraboloidZ given on
D within subsetsSi ⊂ D, i = 1, . . . ,m, by cubic and quintic interpolations.

2. Test function by cubic polynomials

Roughly speaking, our technique for constructing test functions by cubic polyno-
mial consists of defining a paraboloidZ within a fixed domainD ⊂ Rn, then in
redefining the equation representingZ within balls Si ⊂ D, i = 1, . . . ,m, of
radiusρi, such that the resulting functionf is continuously differentiable and has
a local minimum inSi. For simplicity we develop our construction technique in the
case of a unique ballS of radiusρ.

Let us consider the paraboloid Z in a fixed domainD ⊂ Rn of equation

Z : g(x) = ‖x − T ‖2+ t, x ∈ D (2.1)

whereT = (x̄1, . . . , x̄n) ∈ D and t ∈ R are fixed. By‖ · ‖ we denote here and
throughout the paper the euclidian norm. Clearlyg(x) has its minimum atT with
valuet . Denote byM ≡ (y1, . . . , yn) any point chosen in the interior ofD, with
M 6= T ; letη denote the least distance fromM to the boundary ofD,ρ any positive
real withρ < min(η, ‖M − T ‖)?, and

S = {x ∈ Rn| ‖x −M‖ ≤ ρ}, B = F S ≡ the boundary ofS (2.2)

Our aim is to redefineZ in the ballS. Let x ≡ (x1, . . . , xn) be any point inS
andQ be given by

Q ≡
(
ρ
(x1− y1)

‖x −M‖ + y1, . . . , ρ
(xn − yn)
‖x −M‖ + yn

)
.

? The subsequent investigation could be carried out withρ < ‖M − T ‖.

jogo413.tex; 27/08/1998; 11:46; p.2



TEST FUNCTIONS WITH VARIABLE ATTRACTION REGIONS 209

ClearlyQ ∈ B. We determine the univariate cubic polynomialC(λ) such that

C(0) = f C′(0) = 0; C(ρ) = φ C′(ρ) = γ (2.3)

whereφ andγ are the values ofZ atQ and the directional derivative ofZ along
the segment fromQ to M, respectively. Furtherf is any arbitrary real such that
f ≤ f̄ = min{g(x)|x ∈ B}, that is

φ =
n∑
k=1

[
ρ(xk − yk)
‖x −M‖ + yk − x̄k

]2

+ t

γ = 2
n∑
k=1

[
ρ(xk − yk)
‖x −M‖ + yk − x̄k

]
xk − yk
‖x −M‖ . (2.4)

Straightforward computations give

C(λ) = aλ3+ bλ2+ f (2.5)

with

a = − 2

ρ3
(φ − f )+ γ

ρ2
, b = − 3

ρ2
(φ − f )+ γ

ρ
.

At this point for anyx ≡ (x1, . . . , xn) ∈ S we define the function

Cρ(x) =
(

2

ρ2

〈x −M,T −M〉
‖x −M‖ − 2

ρ3
A

)
‖x −M‖3 (2.6)

+
(

1− 4

ρ

〈x −M,T −M〉
‖x −M‖ + 3

ρ2
A

)
‖x −M‖2 + f

whereA = ‖T −M‖2 + t − f , and<,> denotes the usual scalar product.
Finally we define forx ∈ D

f (x) =
{
Cρ(x) if x ∈ S
g(x) if x 6∈ S. (2.7)

We can show the following:

LEMMA 2.1. f (x) given by (2.7) is continuously differentiable inD.
Proof.Consider the first order derivatives; we have forx ∈ D

∂f (x)

∂xj
=
{

∂Cρ(x)

∂xj
if x ∈ S

2(xj − x̄j ) if x 6∈ S (2.8)
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210 M. GAVIANO AND D. LERA

where

∂Cρ(x)

∂xj
= 2

ρ2
hj(x)‖x −M‖ + 3

(
2

ρ2

〈x −M,T −M〉
‖x −M‖ − 2

ρ3
A

)
× (xj − yj )‖x −M‖ − 4

ρ
hj(x)

+ 2

(
1− 4

ρ

〈x −M,T −M〉
‖x −M‖ + 3

ρ2
A

)
(xj − yj )

with hj(x) = (x̄j − yj )‖x −M‖ − 〈x −M,T −M〉(xj − yj )/‖x −M‖. That is

∂Cρ(x)

∂xj
= 2

ρ2
hj(x)‖x −M‖ + 6

ρ2
〈x −M,T −M〉(xj − yj )

− 6

ρ3
A(xj − yj )‖x −M‖ − 4

ρ
hj(x)+ 2(xj − yj )

− 8

ρ

〈x −M,T −M〉
‖x −M‖ (xj − yj )+ 6

ρ2
A(xj − yj ).

We evaluate∂Cρ/∂xj at anyx ∈ B. Substituting‖x −M‖ for ρ into ∂Cρ/∂xj we
get

(2/ρ2) hj (x)ρ + (6/ρ2)〈x −M,T −M〉(xj − yj )
− (6/ρ2) A(xj − yj )− (4/ρ) hj (x)+ 2(xj − yj )
− (8/ρ2)〈x −M,T −M〉(xj − yj )+ (6/ρ2) A(xj − yj )
= −(2/ρ) hj (x)− (2/ρ2)〈x −M,T −M〉(xj − yj )+ 2(xj − yj )
= −2(x̄j − yj )+ (2/ρ2)〈x −M,T −M〉(xj − yj )
− (2/ρ2)〈x −M,T −M〉(xj − yj )+ 2(xj − yj )
= 2(xj − x̄j )

Clearly continuity atx ∈ B follows. To complete the proof we need to show
the continuity of∂f/∂xj atM. We calculate limx→M ∂f/∂xj . In the expression for
∂f/∂xj the only term whose limit is not trivial is

−4

ρ
(xj − yj )〈x −M,T −M〉‖x −M‖ ,

which may be written as

−4

ρ
(xj − yj )θ(x)‖T −M‖

with |θ(x)| < 1. The latter goes to zero asx →M. 2

LEMMA 2.2. The cubic polynomialC(λ) has a minimum atλ = 0.
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TEST FUNCTIONS WITH VARIABLE ATTRACTION REGIONS 211

Proof.The second order derivative ofC(λ) at zero equals:

d2C

dλ2
(0) = 2b = 2

[
3

ρ2
(φ − f )− γ

ρ

]
with φ andγ defined in (2.4). It is not restrictive to assumex ∈ B. In this case

φ =
n∑
k=1

(xk − x̄k)2+ t γ = 2
n∑
k=1

(xk − x̄k) (xk − yk)
ρ

and

ρ2b = ρ2

[
3

ρ2
(φ − f )− γ

ρ

]
=< x − T, (x −M)− 3(T −M) > +3(t − f )
=< v1, v2 > +3(t − f ) (2.9)

wherev1 ≡ (x − T ) andv2 ≡ (x −M)− 3(T −M) ≡ (x − 3T + 2M).
The scalar product〈v1, v2〉 may be given as function ofθ , with cos(θ) = 〈x −

M,T −M〉/(‖x −M‖‖T −M‖). Let

w = (T −M)/‖T −M‖ = (w1, . . . , wn)

and

z = (x − xp)/‖x − xp‖ = (z1, . . . , zn)

wherexp is the projection ofx onto(T −M). Then we may write

x ≡ (w1ρ cosθ + z1ρ sinθ + y1, . . . , wnρ cosθ + znρ sinθ + yn).

Moreover,

v1 ≡ (x − T )
≡ (w1ρ cosθ + z1ρ sinθ + y1− x̄1, . . . , wnρ cosθ + znρ sinθ + yn − x̄n)

and

v2 ≡ (x − 3T + 2M)

≡ (w1ρ cosθ + z1ρ sinθ + 3y1− 3x̄1, . . . , wnρ cosθ + znρ sinθ

+ 3yn − 3x̄n).
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Since〈z,w〉 = 0 and〈z, T −M〉 = 0 we have

〈v1, v2〉 =
n∑
i=1

(wiρ cosθ + ziρ sinθ + yi − x̄i )(wiρ cosθ + ziρ sinθ + 3yi − 3x̄i )

= ρ2 cos2 θ‖w‖2+ ρ2 sin2 θ‖z‖2+ 2ρ2 sinθ cosθ(w1z1+ · · · +wnzn)
− 4ρ cosθ[(x̄1 − y1)w1+ · · · + (x̄n − yn)wn]
− 4ρ sinθ[(x̄1− y1)z1+ · · · + (x̄n − yn)zn] − 6(x̄1y1+ · · · + x̄nyn)

= ρ2− 4ρ cosθ‖T −M‖〈w,w〉 − 6
n∑
i=1

x̄iyi

= ρ2− 4ρ cosθ‖T −M‖ − 6〈T,M〉.
Hence〈v1, v2〉 has its minimum atθ = 0, which impliesx lying in the segment
fromM to T . This is true for b too. At this point we calculateρ2b atθ = 0. We get

ρ2b = −τρ + 3(τ + ρ)τ + 3(t − f )
with τ = ‖x − T ‖.

Further since we assumedf < f̄ , with f̄ being the minimum of the paraboloid
(2.1) in the set B, that is̄f = τ 2+ t , we have

ρ2b = 3τ2 + 2τρ + 3(t − f̄ ) = 3τ 2 + 2τρ − 3τ 2 = 2τρ > 0.

This completes the proof. 2

LEMMA 2.3. M is the unique local minimum off (x) in S.
Proof. First note that by definitionf (x) must have at least one local minimum

in S. Assume the lemma is false. Then there exists a pointR ≡ (x) ∈ S, R 6= M,
that is a local minimum off (x) in S. LetC(λ) be the cubic polynomial constructed
according to (2.3) withφ andγ calculated with respect toR. Because of Lemma
2.2, and since Lemma 2.3 is assumed to be false,C(λ) has two local minima.
Clearly, this contradiction proves the lemma. 2

3. Test function by quintic polynomials

In the preceding paragraph we constructed a continuously differentiable test func-
tion redefining the paraboloidZ by cubic polynomials. Now we generalize this
procedure by using quintic polynomials such that the redefined function is twice
continuously differentiable. LetM, T , S andB be defined as in Section 2. Pro-
ceeding much the same way as in Section 2, first we write the quintic polynomial
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Q(λ) such that

Q(0) = f Q′(0) = 0 Q′′(0) = δ

Q(ρ) = φ Q′(ρ) = γ Q′′(ρ) = 2
(3.1)

whereφ andγ are defined in (2.4) andδ is an arbitrary positive real number. Note
that the second directional derivative ofZ at any point and along any direction is
constant, that is 2. Further,f is any real number such thatf ≤ f̄ = min{g(x)‖x ∈
B}. The equation ofQ(λ) satisfyingQ(0) = f, Q′(0) = 0 is

Q(λ) = aλ5+ bλ4+ cλ3+ dλ2+ f (3.2)

with a, b, c, d parameters to calculate. By taking into account the remaining con-
ditions of (3.1) and solving with respect toa, b, c andd, we get

a = 6

ρ5
(φ − f )− 3

ρ4
γ − 1

2

δ

ρ3
+ 1

ρ3

b = −15

ρ4
(φ − f )+ 7

ρ3
γ + 3

2

δ

ρ2
− 2

ρ2

c = 10

ρ3
(φ − f )− 4

ρ2
γ − 3

2

δ

ρ
+ 1

ρ

d = 1

2
δ.

Since‖x−M‖ = λ, and recallingφ andγ given in (2.4), we define the function
Qρ(x), for anyx ∈ S.

Qρ(x) =
[
− 6

ρ4

〈x −M,T −M〉
‖x −M‖ + 6

ρ5
A+ 1

ρ3

(
1− δ

2

)]
‖x −M‖5

+
[

16

ρ3

〈x −M,T −M〉
‖x −M‖ − 15

ρ4
A− 3

ρ2

(
1− δ

2

)]
‖x −M‖4

+
[
−12

ρ2

〈x −M,T −M〉
‖x −M‖ + 10

ρ3
A+ 3

ρ

(
1− δ

2

)]
‖x −M‖3

+ 1

2
δ‖x −M‖2 + f (3.3)

with A = ‖T −M‖2 + t − f . Then the function defined for anyx ∈ D is

f (x) =
{
Qρ(x) if x ∈ S
g(x) if x 6∈ S. (3.4)

We can prove

LEMMA 3.1. f (x) is twice continuously differentiable.
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214 M. GAVIANO AND D. LERA

Proof.The first order derivatives off (x) are

∂f (x)

∂xj
=
{

∂Qρ(x)

∂xj
if x ∈ S

2(xj − x̄j ) if x 6∈ S (3.5)

for j = 1, . . . , n and

∂Qρ(x)

∂xj
=− 6

ρ4
hj(x)‖x −M‖3

+ 5
[
− 6

ρ4

〈x −M,T −M〉
‖x −M‖ + 6

ρ5
A+ 1

ρ3

(
1− δ

2

)]
× (xj − yj )‖x −M‖3+ 16

ρ3
hj(x)‖x −M‖2

+ 4

[
16

ρ3

〈x −M,T −M〉
‖x −M‖ − 15

ρ4
A− 3

ρ2

(
1− δ

2

)]
(3.6)

× (xj − yj )‖x −M‖2− 12

ρ2
hj(x)‖x −M‖

+ 3

[
−12

ρ2

〈x −M,T −M〉
‖x −M‖ + 10

ρ3
A+ 3

ρ

(
1− δ

2

)]
× (xj − yj )‖x −M‖ + δ(xj − yj )

with hj(x) = (x̄j − yj )‖x −M‖ − 〈x −M,T −M〉(xj − yj )/‖x −M‖.
We need to consider∂Qρ(x)/∂xj in the setB, that is forx such that‖x−M‖ =

ρ. We obtain

− (2/ρ) hj (x)− (2/ρ2) 〈x −M,T −M〉(xj − yj )
+ 2(xj − yj )(1− δ/2)+ δ(xj − yj )
=− 2(x̄j − yj )+ (2/ρ2) 〈x −M,T −M〉(xj − yj )
− (2/ρ2) 〈x −M,T −M〉(xj − yj )+ 2(xj − yj )
=2(xj − x̄j ).

Since

lim
P→M

∂Qρ(x)

∂xj
= 0, for j = 1, . . . , n

it follows thatf (x) is continuously differentiable. Now we consider the second or-
der derivatives∂2f (x)/∂xj ∂xk and∂2f (x)/∂x2

j . We have forj, k = 1, . . . , n, j 6=
k

∂2f (x)

∂xj ∂xk
=
{

∂2Qρ(x)

∂xj ∂xk
if x ∈ S

0 if x 6∈ S
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where

∂2Qρ(x)

∂xj∂xk
=− 6

ρ4

[
∂hj (x)

∂xk
‖x −M‖3 + 3hj(x)(xk − yk)‖x −M‖

]
− 30

ρ4
hk(x)(xj − yj )‖x −M‖

+ 15

[
− 6

ρ4

〈x −M,T −M〉
‖x −M‖ + 6

ρ5
A+ 1

ρ3

(
1− δ

2

)]
× (xj − yj )(xk − yk)‖x −M‖
+ 16

ρ3

[
∂hj (x)

∂xk
‖x −M‖2 + 2hj(x)(xk − yk)

]
+ 64

ρ3
hk(x)(xj − yj )

+ 8

[
16

ρ3

〈x −M,T −M〉
‖x −M‖ − 15

ρ4
A− 3

ρ2

×
(

1− δ
2

)]
(xj − yj )(xk − yk)

− 12

ρ2

[
∂hj (x)

∂xk
‖x −M‖ + hj(x)(xk − yk)‖x −M‖

]
− 36

ρ2
hk(x)

(xj − yj )
‖x −M‖

+ 3
[
−12

ρ2

〈x −M,T −M〉
‖x −M‖ + 10

ρ3
A+ 3

ρ

(
1− δ

2

)]
× (xj − yj )(xk − yk)‖x −M‖ ,

with

∂hj(x)

∂xk
= (x̄j − yj )(xk − yk)‖x −M‖ −

hk(x)

‖x −M‖2 (xj − yj )

hk(x) = (x̄k − yk)‖x −M‖ − 〈x −M,T −M〉(xk − yk)‖x −M‖

and forj = 1, . . . , n

∂2f (x)

∂x2
j

=
{

∂2Qρ(x)

∂x2
j

if x ∈ S
2 if x 6∈ S
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where

∂2Qρ(x)

∂x2
j

=− 6

ρ4

[
∂hj (x)

∂xj
‖x −M‖3 + 3hj(x)(xj − yj )‖x −M‖

]
− 30

ρ4
hj(x)(xj − yj )‖x −M‖

+
[
− 6

ρ4

〈x −M,T −M〉
‖x −M‖ + 6

ρ5
A+ 1

ρ3

(
1− δ

2

)]
× [5‖x −M‖3 + 15(xj − yj )2‖x −M‖

]
+ 16

ρ3

[
∂hj (x)

∂xj
‖x −M‖2 + 2hj(x)(xj − yj )

]
+ 64

ρ3
hj(x)(xj − yj )

+
[

16

ρ3

〈x −M,T −M〉
‖x −M‖ − 15

ρ4
A− 3

ρ2

(
1− δ

2

)]
× [4‖x −M‖2 + 8(xj − yj )2

]
− 12

ρ2

[
∂hj (x)

∂xj
‖x −M‖ + hj(x)(xj − yj )‖x −M‖

]
− 36

ρ2
hj(x)

(xj − yj )
‖x −M‖

+
[
−12

ρ2

〈x −M,T −M〉
‖x −M‖ + 10

ρ3
A+ 3

ρ

(
1− δ

2

)]
×
[
‖x −M‖ + 3

(xj − yj )2
‖x −M‖

]
+ δ

with

∂hj(x)

∂xj
= (x̄j − yj )(xj − yj )‖x −M‖ −

hj(x)

‖x −M‖2 (xj − yj )−
〈x −M,T −M〉
‖x −M‖ .

We need to investigate∂2Qρ/(∂xj∂xk), j, k = 1, . . . , n, in the setB. Substi-
tuting ‖x −M‖ = ρ in these derivatives, straigthforward computations give(

∂2Qρ

∂xj∂xk

)
B

= 0

(
∂2Qρ

∂x2
j

)
B

= 2 j, k = 1, . . . , n; j 6= k

and the continuity of∂2f/(∂xj∂xk), (j, k = 1, . . . , n) in B follows. We conclude
the proof by verifying the continuity of the second derivatives off (x) atM. Since∣∣∣∣〈x −M,T −M〉‖x −M‖

∣∣∣∣ < ‖T −M‖ (3.7)
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TEST FUNCTIONS WITH VARIABLE ATTRACTION REGIONS 217

and
xj − yj
‖x −M‖ < 1 (3.8)

we get

lim
x→M

hj(x) = 0. (3.9)

At this point, it is easy to show that (3.7), (3.8) and (3.9) imply

lim
x→M

∂2f (x)

∂xj ∂xk
= 0, j 6= k.

Proceeding much the same way we get

lim
x→M

∂2f (x)

∂x2
j

= δ 2

We now want to show that a lemma similar to Lemma 2.3 holds forf (x) defined
by (3.4). We need to prove the following lemma first.

LEMMA 3.2. Letλ ∈ (0, ρ) be fixed,G = {x ∈ Rn|‖x−M‖ = λ}, andP1, P2 ∈
G. If θ2 < θ1 with

cosθi = 〈Pi −M,T −M〉‖Pi −M‖‖T −M‖ , i = 1,2

thenf (P2) < f (P1).
Proof.Let P ∈ S, P ≡ (x); we can write

φ(θ) =f (x1, . . . , xn) =
[

1

ρ3

(
1− δ

2

)
+ 6

ρ5
A− 6

ρ4
‖T −M‖ cosθ

]
λ5

+
[
− 3

ρ2

(
1− δ

2

)
− 15

ρ4
A+ 16

ρ3
‖T −M‖ cosθ

]
λ4

+
[

3

ρ

(
1− δ

2

)
+ 10

ρ3
A− 12

ρ2
‖T −M‖ cosθ

]
λ3

+ 1

2
δλ2+ f (3.10)

with A = ‖M − T ‖2+ t − f , λ = ‖P −M‖ andθ ∈ [0, π ].

We rewrite (3.10) as

φ(θ) =
[

1

ρ3

(
1− δ

2

)
+ 6

ρ5
A

]
λ5+

[
− 3

ρ2

(
1− δ

2

)
− 15

ρ4
A

]
λ4

+
[

3

ρ

(
1− δ

2

)
+ 10

ρ3
A

]
λ3+ 1

2
δλ2+ f

+ ‖T −M‖ cosθ

[
− 6

ρ4
λ2+ 16

ρ3
λ− 12

ρ2

]
λ3
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Since[
− 6

ρ4
λ2+ 16

ρ3
λ− 12

ρ2

]
< 0 ∀λ ∈ (0, ρ)

and cosθ decreases in[0, π ], the lemma is proved. 2

LEMMA 3.3. M is the unique local minimum off (x), f (x) defined by (3.4), in
the setS.

Proof. First note that by definitionf (x) must have at least one local minimum
in S. Assume there is a local minimumM∗ 6= M,M∗ ∈ S. Let

cosθ∗ = 〈M
∗ −M,T −M〉

‖M∗ −M‖‖T −M‖;

θ∗ cannot be zero. Indeed, in this case the quintic polynomial throughM andM∗
defined in (3.2) would have first and second order derivatives atλ = ρ negative
while the directional derivativesγ and δ are negative and positive, respectively.
θ∗ 6= 0 andM being a local minimum imply the existence ofP ∈ S such that

‖P −M‖ = λ∗, λ∗ = ‖M∗ −M‖

θ∗ < θ̄, f (P ) > f (M∗)

with

cosθ̄ = 〈P −M,T −M〉‖P −M‖‖T −M‖
Clearly we get a contradiction with respect to Lemma 3.2. 2

4. Test function construction

In this section we use the results of Sections 2 and 3 to define a test functionf (x)

more general than that given by (2.7) or (3.4), and that exhibits the desiderable
features listed in the introduction. For simplicity we assume that the domainD

where the global minimum is sought is an interval inRn, that is

D = {x ∈ Rn| lj ≤ xj ≤ uj , j = 1, . . . , n} (4.1)

with l ≡ (lj ), u ≡ (uj ), l, u ∈ Rn.
The test functionf (x) will havem + 1 local minima: the pointT , given in (2.1),
and the pointsMi, i = 1, . . . ,m, Mi 6= T, Mi 6= Mj with i 6= j . Further,f (x) is
constructed by redefining the paraboloidZ given in (2.1), within the setsSi given
by

Si = {x ∈ Rn| ‖x −Mi‖ ≤ ρi} i = 1, . . . ,m. (4.2)
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The choice ofρi is done under the following two constraints: (i) the setsSi do not
overlap; (ii) eachSi is entirely contained inD. These conditions are satisfied by
requiring fori = 1, . . . ,m

ρi ≤ min(boundi ,disti )

with

boundi = min
j

(
uj − yij , yij − lj

)
disti = min

(
min
k 6=i ‖Mi −Mk‖, ‖Mi − T ‖

)
(4.3)

with Mi ≡ (yi1, . . . , yin).
Hence theρi are chosen according to

ρi = wi min(boundi ,disti ). (4.4)

wherewi ∈ (0,1). Thewi are scaling factors in the interval(0,1); they may be
used to increase or decreaseρi. Finally, our test function, in the case of cubic
interpolation, is defined by

f (x) =
{
Ck(x) if x ∈ Sk, k ∈ {1, . . . ,m}
‖x − T ‖2+ t if x 6∈ S1 ∪ · · · ∪ Sm.

where

Ck(x) =
(

2

ρ2
k

〈x −Mk, T −Mk〉
‖x −Mk‖ − 2

ρ3
k

A

)
‖x −Mk‖3

+
(

1− 4

ρk

〈x −Mk, T −Mk〉
‖x −Mk‖ + 3

ρ2
k

A

)
‖x −Mk‖2+ fk

with A = ‖T −Mk‖2+ t − fk andfi ∈ R such that

fi ≤ min{g(x)|x ∈ Bi}, Bi = {x ∈ Rn| ‖x −Mi‖ = ρi} (4.5)

The test function based on the quintic interpolation is defined by

f (x) =
{
Qk(x) if x ∈ Sk, k ∈ {1, . . . ,m}
‖x − T ‖2+ t if x 6∈ S1 ∪ · · · ∪ Sm.

where

Qk(x) =
[
− 6

ρ4
k

〈x −Mk, T −Mk〉
‖x −Mk‖ + 6

ρ5
k

A+ 1

ρ3
k

(
1− δ

2

)]
‖x −Mk‖5

+
[

16

ρ3
k

〈x −Mk, T −Mk〉
‖x −Mk‖ − 15

ρ4
k

A− 3

ρ2
k

(
1− δ

2

)]
‖x −Mk‖4

+
[
−12

ρ2
k

〈x −Mk, T −Mk〉
‖x −Mk‖ + 10

ρ3
k

A+ 3

ρk

(
1− δ

2

)]
‖x −Mk‖3

+ 1

2
δ‖x −Mk‖2+ fk
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with fi ∈ R satisfies (4.5).
To summarize, the following are the parameters to be assigned to define a test

function.

(1) l, u ∈ Rn such thatl < u
(2) T = (x̄1, . . . , x̄n), lj < x̄j < uj
(3) m, the number of new local minima
(4) Mi in the interior ofD, i = 1, . . . ,m
(5) wi ∈ (0,1), i = 1, . . . ,m
(6) fi ∈ R such thatfi ≤ min{g(x)|x ∈ Bi}, Bi = {x ∈ Rn|‖x −Mi‖ = ρi} and

ρi is calculated by (4.4).

In Figures 1 and 2 the level sets of two functionsCubfun1and Cubfun2, re-
spectively, constructed by using cubic interpolation, are shown. The following
parameters have been chosen for both functions:

li = −1, ui = 1, i = 1,2; T ≡ (0,0).
In particular, forCubfun1we have

No. local minimam = 3

M1 = (−0.2135, −0.7038) f1 = 1.900 ρ1 = 0.2962

M2 = (−0.5621, 0.3586) f2 = 1.525 ρ2 = 0.3334

M3 = (0.3577, −0.2330) f3 = 1.200 ρ3 = 0.2134

ForCubfun2we have

No. local minimam = 8

M1 = (0.8694, −0.9146) f1 = 2.2000 ρ1 = 0.0854

M2 = (0.0388, −0.8663) f2 = 2.0000 ρ2 = 0.1337

M3 = (−0.2330, −0.2332) f3 = 1.8503 ρ3 = 0.1648

M4 = (−0.6734, 0.3998) f4 = 1.7286 ρ4 = 0.2835

M5 = (−0.1252, 0.2550) f5 = 1.4571 ρ5 = 0.1420

M6 = (0.3586, 0.3423) f6 = 1.1857 ρ6 = 0.1543

M7 = (0.2997, 0.0394) f7 = 0.9143 ρ7 = 0.1511

M8 = (0.6619, −0.1650) f8 = 0.5000 ρ8 = 0.2079

In Figures 3 and 4 the level sets of two functionsQuinfun1andQuinfun2, con-
structed by using quintic interpolation, are shown.

The following parameters have been chosen for both functions:

li = −1, ui = 1, i = 1,2; T ≡ (0,0).
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Figure 1. Graph ofCubfun1
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Figure 2. Graph ofCubfun2
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Figure 3. Graph ofQuinfun1
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Figure 4. Graph ofQuinfun2
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Specifically forQuinfun1we have

No. local minimam = 2

M1 = (−0.2330, 0.6619) f1 = 2.0000 ρ1 = 0.3381

M2 = (0.5673, −0.4863) f2 = 1.8000 ρ2 = 0.3727

ForQuinfun2we have

No. local minimam = 6

M1 = (−0.9846, 0.8609) f1 = 2.5000 ρ1 = 0.0154

M2 = (−0.8663, 0.0539) f2 = 2.0000 ρ2 = 0.1337

M3 = (−0.1650, −0.8161) f3 = 1.7000 ρ3 = 0.1839

M4 = (0.3735, 0.3078) f4 = 1.3000 ρ4 = 0.2420

M5 = (−0.2332, 0.6923) f5 = 1.2400 ρ5 = 0.3077

M6 = (0.1780, −0.1680) f6 = 1.0000 ρ6 = 0.1224
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